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SUMMARY

In continuation of our previous work on nonlinear stability analysis of trimmed isogeometric thin shells,
this contribution is an extension to dynamic buckling analyses for predicting reliably complex snap-through
and mode-jumping behavior. Specifically, a modified generalized-α time integration scheme is used and
combined with a nonlinear isogeometric Kirchhoff-Love shell element to provide second-order accuracy
while introducing controllable high-frequency dissipation. In addition, a weak enforcement of essential
boundary conditions based on a penalty approach is considered with a particular focus on the inhomogeneous
case of imposed prescribed displacements. Moreover, we propose a least-squares B-spline surface fitting
approach and corresponding error measures to model both eigenmode based and measured geometric
imperfections. The imperfect geometries thus obtained can be naturally integrated into the framework of
isogeometric nonlinear dynamic shell analysis. Based on this idea, the different modeling methods and the
influence of the appropriately considered geometric imperfections on the dynamic buckling behavior can be
investigated systematically. Both perfect and geometrically imperfect shell models are considered to assess
the performance of the proposed method. We compare our method with established developments in this
field and demonstrate superior achievements with regard to solution quality and robustness.
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1. INTRODUCTION

Shells are prone to buckling. Comparing experiments and theoretical predictions, the buckling loads
of thin-walled structures show large discrepancies and scatters [1, 2, 3], which can be traced back
largely to combined effects of nonlinearity and randomness of different sources of imperfections
[4, 5, 6, 7, 8]. Among the different types of imperfections, geometric imperfections, mainly due
to manufacturing processes, are ubiquitous with severe effects on the buckling behavior of shell
structures. This observation has led to a number of studies on the geometric imperfection sensitivity
of thin-walled structures using experiments [4, 9, 10], different buckling theories [11, 12] as well as
numerical approaches [6, 13, 14, 15, 16] to capture this phenomena appropriately. The finite element
method (FEM) as the established numerical standard in this field of research uses linear facet
elements to represent mostly curved shell geometries. This approximation introduces additional
geometric imperfections to what should be a smoothly curved structure which may lead to accuracy
problems in shell buckling analysis [17].

In recent years, isogeometric analysis (IGA) [17] has attracted a considerable amount of attention
in the field of shell analysis due to the higher-order smooth geometry representation and higher-
order approximation of physical fields. A number of IGA shell elements [18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28] have been proposed which show superior approximation properties compared
to traditional FE shell elements. In particular, the higher-order continuous approximation basis
used allows straightforward construction of rotation-free Kirchhoff-Love shell elements, for which
fast convergence has been demonstrated in both linear and nonlinear cases. Despite the success of
isogeometric shell analysis, the non-interpolatory property of NURBS still remains a challenge for
the enforcement of essential boundary conditions and multi-patch coupling constraints, especially
along trimmed patch boundaries. To cope with this challenge, three major strategies are currently
well established in isogeometric analysis including (i) penalty methods [29, 30, 31, 32], (ii)
Lagrange multiplier and augmented Lagrange multiplier methods [33, 34, 26], and (iii) Nitsche-
like methods [35, 36, 37, 38, 39, 40, 41, 42, 43]. An overview and comparison of the different
strategies is presented in [44].

The advent of IGA has initiated a number of researches in the field of shell buckling, where
the property of accurate geometry representation is advantageously exploited. These researches can
be classified into two categories: static buckling analysis [45, 46, 47, 48, 49, 50, 51, 52, 53, 15]
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and dynamic buckling analysis [54, 55, 56, 57]. In linear static buckling analysis, the superior
accuracy of IGA in terms of buckling loads and mode shapes has been frequently observed [45, 46].
In particular, Oesterle et al. [51] systematically investigated the sources of the observed superior
accuracy and demonstrated an irreplaceable role of high approximation power of k-refined NURBS
rather than the exact geometry representation. However, effects of nonlinearity and geometric
imperfections have not been considered. In nonlinear static buckling analysis, where snap-through
or bifurcation exists, a path-following method is indispensable to trace the post-buckling equilibrium
path [53, 15, 49]. To this end, a computationally highly efficient reduced order method, the Koiter-
Newton arc-length method, was developed in [14] and later used in the framework of isogeometric
analysis to study buckling of thin shell structures [53, 15].

In some cases, it is difficult to compute the complete shell buckling behavior by path-following
methods due to complex mode jumps and branch-switching [58, 59]. Alternatively, one can analyze
shell buckling problems using quasi-static methods, such as dynamic relaxation, or by dynamic
methods, such as explicit shell dynamics [60, 61, 62, 63, 55, 57]. A less common approach to
analyzing shell buckling are implicit dynamics schemes, although they are more stable and allow
much larger time steps compared to explicit schemes [64]. Typical implicit schemes for structural
dynamics are representatives of the Newmark family [65], where second-order accuracy can be
preserved with the Newmark parameters β = 0.25, γ = 0.5. However, sometimes it is desirable
to introduce high-frequency damping in shell buckling analysis to mitigate the influences of the
inaccurate high-frequency modes. To introduce numerical dissipation, the Newmark schemes will
drop to first-order accuracy which motivated the development of second-order accurate, high-
frequency dissipative, one-step implicit schemes, e.g. HHT-α [66], Bossak [67] and generalized-α
schemes [68]. These schemes compute inertial, external and internal forces as a linear combination
of corresponding quantities at both ends of the time step. Unfortunately, when applied to nonlinear
elastodynamics, the above conservation/dissipation properties are not preserved [69]. To solve this
problem, an energy and momentum preserving scheme [70, 71, 72, 73, 74] was proposed, which
combines the midpoint rule and the algorithmic evaluation of stresses and ensures second order
accuracy in nonlinear structural dynamics. Furthermore, to introduce high-frequency dissipation,
a mid-point rule in the above energy-momentum conserving scheme was replaced with the
generalized-α scheme leading to the generalized energy-momentum scheme [72, 75]. Special
cases are the modified generalized-α, HHT-α and Bossak schemes, etc. Although conservation of
momentum is not guaranteed, the generalized energy-momentum scheme is considered to be highly
suitable for nonlinear structural dynamic analysis [76]. Other recently developed implicit schemes
which are not considered herein can be found in [77, 78, 79, 56].

In the present paper, we extend our previous work on nonlinear stability analysis of trimmed
isogeometric thin shells to dynamic analyses to allow for an efficient prediction of complex
snap-through and mode jumping behavior. Specifically, a modified generalized-α time integration
scheme is used and combined with the nonlinear isogeometric Kirchhoff-Love shell element to
ensure second-order accuracy while introducing controllable high-frequency dissipation. Besides,
a penalty-based weak enforcement of essential boundary conditions is tested extensively, with a
particular focus on the non-homogeneous case of prescribed displacements. Moreover, we propose
a least-squares B-spline surface fitting approach and corresponding error measures to model both,
eigenmode based and measured geometric imperfections. The obtained imperfect geometries can be
naturally incorporated into the framework of isogeometric nonlinear shell dynamic analysis. Based
on this idea, the influences of the geometric imperfection and the modeling methods of geometric
imperfection on the dynamic buckling behavior of shell structures is investigated systematically.

The paper is organized as follows: the Kirchhoff-Love shell theory, governing equations including
an isogeometric discretization is summarized briefly in Section 2. Next, the generalized-α time
integration scheme and the corresponding linearization steps are presented in Section 3. We present
and discuss the weak enforcement of homogeneous and non-homogeneous essential boundary
conditions for a Kirchhoff-Love shell formulation in Section 4. Furthermore, a least-squares B-
spline surface fitting approach for the modeling of geometric imperfections is introduced in Section
5. Various numerical examples are presented in Section 6 to document and assess carefully the
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developed advancements. Finally, we summarize the main findings and draw conclusions in Section
7.

2. ISOGEOMETRIC KIRCHHOFF-LOVE SHELL ELEMENT FORMULATION

In the following, we provide a brief summary of the used isogeometric Kirchhoff-Love shell
element. In sub-section 2.1 the kinematic assumptions and constitutive relations are summarized.
In sub-section 2.2, we present the governing integral equations and corresponding isogeometric
discretization.

2.1. Kinematics and constitutive relations

Herein, Kirchhoff-Love assumptions are used to model thin shells where transverse shear and
normal deformations are neglected. Therefore, the director of the shell remains normal to the mid-
surface during deformation, and the description of the shell kinematics can be purely represented
by the mid-surface. In the following, we use an upper case notation for quantities which refer to
the undeformed reference configuration, and a lower case notation for quantities which refer to the
current deformed configuration. We note that, Greek indices take values 1, 2, Latin indices take
values 1, 2, 3.
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Figure 1. Shell geometry and coordinate systems.

The reference and current configurations of the 3D shell body, cf. Figure 1, can be described as:

X(ξ1, ξ2, ξ3) = X̄(ξ1, ξ2) + ξ3 D(ξ1, ξ2), (1)

x(ξ1, ξ2, ξ3) = x̄(ξ1, ξ2) + ξ3 d(ξ1, ξ2), (2)

where X and x are the position vectors of a material point in the reference and current configuration
respectively, X̄ and x̄ denote the position vectors of the shell mid-surface, D and d are the
directors of the shell mid-surface, where ξi denotes the parameterized coordinates of the shell, and
ξ3 ∈ [−0.5h, 0.5h] varies linearly through the shell thickness h. Based on the above description, the
displacement of each point of the shell body can be represented as u = x−X.

The basis vectors of the shell midsurface are defined as:

Aα = X̄,α, A3 = D =
A1 ×A2

|A1 ×A2|
, (3)

aα = x̄,α, a3 = d =
a1 × a2

|a1 × a2|
(4)
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where (·),α denotes the partial derivative ∂(·)/∂ξα. With (3) and (4), the covariant base vectors can
be described as:

Gα = X,α = X̄,α + ξ3D,α = Aα + ξ3D,α, G3 = X,3 = D, (5)

gα = x,α = x̄,α + ξ3d,α = aα + ξ3d,α, g3 = x,3 = d . (6)

The Green-Lagrange strain tensor E follows as:

E =
1

2

(
FTF− I

)
= EijG

i ⊗Gj (7)

where F = dx
dX is the deformation gradient which links the reference configuration to the deformed

configuration and I is the identity tensor. The strain tensor coefficients in (7) are defined as:

Eij =
1

2
(gij −Gij) (8)

where

gij = gi · gj , Gij = Gi ·Gj . (9)

For the geometrically nonlinear elastic Kirchhoff-Love shell, the director is assumed to be non-
stretchable and remains straight and normal to the midsurface during deformation. Therefore, the
transverse shear and normal strains vanish, Eα3 = E33 = 0. Substituting (5) and (6) into (9) and
neglecting second order terms results in:

Eαβ = εαβ + θ3καβ (10)

=
1

2
[(aα · aβ −Aα ·Aβ) + 2ξ3 (Aα,β ·D− aα,β · d)] (11)

where εαβ and καβ are the membrane and bending strains, respectively, where we have used the
relations Aα,β ·D = −Aα ·D,β , and where

Aα,β = Xα,β , aα,β = xα,β . (12)

The relation between stress and strain tensor for the plane stress problem are established using
the St. Venant-Kirchhoff constitutive model which is in Voigt notation:S̄12

S̄22

S̄12

 = C̄

 Ē12

Ē22

2Ē12

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 Ē12

Ē22

2Ē12

 (13)

where Sαβ is the contravariant components of the second Piola-Kirchhoff stress tensor S, where
C is the material tensor, where E is Young’s modulus and ν the Poisson ratio, where (̄·) denotes
the quantities represented in the local Cartesian coordinate system eγ ⊗ eδ. A transformation of the
strain components from the contravariant basis to the local Cartesian basis follows as:

Ēγδ = Eαβ(eγ ·Gα)(Gβ · eδ) (14)

For Kirchhoff-Love shell problems, the membrane force N̄αβ and bending moments M̄αβ are
utilized which result from the integration of the stress components through the shell thickness:N̄11

N̄22

N̄12

 = h · C̄

 ε̄11

ε̄22

2 ε̄12

 , (15)

and M̄11

M̄22

M̄12

 =
h3

12
· C̄

 κ̄11

κ̄22

2 κ̄12

 . (16)
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2.2. Governing equations and isogeometric discretizations

The governing integral equations of the geometrically nonlinear elastic Kirchhoff-Love shell
formulation are:∫

A

P0 · δu dA+

∫
Γt

T0 · δu dΓ−
∫
A

(N : δε+ M : δκ)dA =

∫
A

ρhü · δu dA (17)

where δε, δκ and δu denote the variation of the membrane strain, bending strain and displacement,
respectively, where A and dA are the analysis domain and differential area of the shell midsurface
in the reference configuration, respectively, where ρ is the density, P0 is the unit surface load
and T0 is the prescribed traction along the Neumann boundary Γt. For simplicity, we assume P0

and T0 are independent of the displacement field u. The upper double dots in the term on the
right hand-side of (17) which represents the inertia forces denote the second derivative of u with
respect to time. It should be noted that we neglected the actual damping in (17) in order to study
the influence of the numerical damping of the time integration method on the dynamic buckling
behaviors of the shell structures.

Following the concept of isogeometric analysis, the displacement field and its variations are
discretized with the same NURBS basis used to describe the shell midsurface X̄:

X̄ =

n∑
i=1

RiPi = RTP (18)

u =

n∑
i=1

RiUi = RTU (19)

δu =

n∑
i=1

RiδUi = RTδU. (20)

where n is the total number of control points, where vectors Ui and δUi represent sets of three
unknown coefficients associated with each control point Pi, where Ri = Ri(ξ1, ξ2) is the i-th
NURBS basis function, where R, P, U and δU are the vectors collecting the corresponding
quantities. The two-dimensional NURBS basis functions of order p = (p1, p2) in the ξ1 and ξ2
parametric directions are defined as:

Ri,p (ξ1, ξ2) =
Nk,p1 (ξ1)Ml,p2 (ξ2)wkl∑n1

k̂=1

∑n2

l̂=1
Nk̂,p1 (ξ1)Ml̂,p2

(ξ2)wk̂l̂
(21)

where i = i(k, l) represents a mapping between the two dimensional tensor product index space
(k, l) and the one dimensional index space i, whereNk,p1(ξ1) andMl,p2(ξ2) are the one-dimensional
B-spline basis of polynomial degree ps in each parametric direction with s ∈ 1, 2, respectively,
where wkl are the weights associated to the i = i(k, l)-th NURBS basis. For simplicity, we use i
instead of i(k, l) and omit the parametric coordinates ξ1 and ξ2 in the following of the paper. For
more details of the NURBS and B-spline basis functions, we refer the reader to [80].

Substituting (19) and (20) into (17) and leveraging the arbitrary nature of δUi, semi-discretized
equilibrium equations can be obtained:

f − r = Ma Ü (22)

where Ma is the mass matrix denoted as:

Ma =

∫
A

ρhRTR dA , (23)

where r and f in (22) are the internal and external force vectors, respectively, expressed as:

r =

∫
A

(
N :

∂ε

∂U
+ M :

∂κ

∂U

)
dA (24)
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f =

∫
A

RT ·P0 dA+

∫
Γt

RT ·T0 dΓ . (25)

3. GENERALIZED-α TIME MARCHING SCHEME

In this section, the modified generalized-α time marching scheme used to discretize the time domain
of the governing equations is briefly introduced in 3.1. Then a linearization and iterative solution
strategy of the governing equations is presented in 3.2.

3.1. Algorithmic equations

In general, equation (22) represents a time-dependent nonlinear problem and can be solved for each
time step with iterative procedures to ensure a balance of momentum. Assume that the time interval
of interest [0, T ] is partitioned into typical time intervals [tn, tn+1] with the corresponding time step
∆t = tn+1 − tn, and that the state variables are known at the time tn. The integration of Eq. (22) is
then restricted to successively solving the state variables at the end of each step tn+1.

Assuming Newmark’s approximations, the acceleration is assumed to be linearly changing over
the time step which results for velocities and displacements in:

U̇n+1 = U̇n + (1− γ)∆t Ün + γ∆t Ün+1 (26)

Un+1 = Un + ∆t U̇n +
1− 2β

2
∆t2Ün + β∆t2Ün+1 (27)

where β and γ are the integration parameters which determine the characteristics of the system.
Consequently, the accelerations and velocities at the end of the time step are:

Ün+1 =
1

β∆t2
(Un+1 −Un)− 1

β∆t
U̇n −

1− 2β

2β
Ün (28)

U̇n+1 =
γ

β∆t
(Un+1 −Un)− γ − β

β
U̇n −

γ − 2β

2β
∆t Ün . (29)

Following [72], the semi-discrete governing equation (22) is applied to general mid-points tn+1−αf
and tn+1−αm instead of the end-points tn+1 of the time step interval which modifies the governing
equations to:

fn+1−αf − rn+1−αf = Ma Ün+1−αm (30)

where the subscripts represent the time discrete combinations of the corresponding quantities
expressed as:

Ün+1−αm = (1− αm)Ün+1 + αmÜn (31)

fn+1−αf = (1− αf )fn+1 + αf fn (32)

and where rn+1−αf is the algorithmic internal forces evaluated at the generalized mid-point
tn+1−αf . Classically, the internal force is represented accordingly:

rn+1−αf = (1− αf )rn+1 + αfrn = (1− αf )r(Un+1) + αfr(Un) . (33)

Alternatively, rn+1−αf can be represented as:

rn+1−αf = r(Un+1−αf ) (34)

where

Un+1−αf = (1− αf )Un+1 + αfUn . (35)
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Unless otherwise announced, we use the algorithmic internal force (34) in the following.
The choice of the algorithmic parameters αf , αm, β and γ is crucial for the stability and

accuracy of the generalized-α scheme. In principle, these parameters are functions of the spectral
radius ρ∞ ∈ [0, 1] which represents the spectral radius of the amplification matrix of the recurrence
algorithm when (∆t/T )→∞ with T being the time period [68]:

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, β =
1

(1 + ρ∞)2
, γ =

3− ρ∞
2(1 + ρ∞)

. (36)

The value of ρ∞ controls the amount of high-frequency numerical dissipation where ρ∞ = 1
corresponds to the case of no dissipation, while ρ∞ = 0 corresponds to the case of asymptotic
annihilation.

Combining the modified governing equation (30) and the Newmark approximations (28), (29),
the effective structural equation can be derived as:

r(Un+1−αf ) + Ma

(
1− αm
β∆t2

(Un+1 −Un)− 1− αm
β∆t

U̇n −
1− αm − 2β

2β
Ün

)
− fn+1−αf = G(Un+1) = 0 (37)

where G(Un+1) is the nonlinear residual vector which depends on the unknown displacement
Un+1.

3.2. Linearization and iterative solution procedure

The consistent linearization of the nonlinear residual G(Un+1) in (37) reads:

G(Uk+1
n+1) = G(Uk

n+1) +
∂G(Uk

n+1)

∂Un+1
(Uk+1

n+1 −Uk
n+1) +O(∆t2) = 0 (38)

where the superscripts k and k + 1 represent the relevant iteration cycles in each time step.
Substituting (37) into (38) and taking derivatives w.r.t. the displacement variables Un+1 results

in the linear system of equations:

K∗∆Uk+1
n+1 = −G(Uk

n+1) (39)

where ∆Uk+1
n+1 = Uk+1

n+1 −Uk
n+1 is the iterative change of the displacement vector, and where K∗

is the effective stiffness matrix of form:

K∗ =
∂r(Un+1−αf (Uk

n+1))

∂Un+1
+

1− αm
β∆t2

Ma = (1− αf )KT +
1− αm
β∆t2

Ma (40)

where KT = KT (Un+1−αf (Uk
n+1)) is the deformation dependent algorithmic tangent stiffness

matrix expressed as:

KT =

∫
A

(
∂N

∂U
· ∂ε
∂U

+ N · ∂2ε

∂U∂U
+
∂M

∂U
· ∂κ
∂U

+ M · ∂2κ

∂U∂U

)
dA . (41)

Equation (39) can be solved iteratively applying a Newton-Raphson method. At each new
time step the displacement field U0

n+1 is set to the converged state of the previous time step
as an appropriate initial guess of the iteration. Based on the first estimation of displacement
increment ∆U1

n+1, the internal force vector, the stiffness matrix as well as the accelerations for
the next iteration is updated. A detailed step-by-step representation of the generalized-α algorithm
is presented in Algorithm 1.
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Algorithm 1 Generalized-α time integration algorithm for nonlinear problems

1: Initialize: Ut=0, U̇t=0 and rt=0

2: Compute the mass matrix Ma through (23)
3: Compute initial accelerations Üt=0

4: for each time increment ∆t do
5: Initialize: dU0

n+1 = 0, r0
n+1−αf = rn

6: for j = 0, 1, 2, · · · do
7: Compute tangential stiffness Kj

T through (41)
8: Compute Kj

∗ through (40)
9: Compute G(Uj

n+1) through (37)
10: Solve for ∆Uj+1

n+1 through (39)
11: Update displacement increments dUj+1

n+1 = dUj
n+1 + ∆Uj+1

n+1

12: Update displacements Uj+1
n+1 = Uj

n+1 + dUj+1
n+1

13: Compute updated algorithmic internal force rj+1
n+1−αf through (34) and (24)

14: Compute accelerations Üj+1
n+1 through (28)

15: Compute residual G(Uj+1
n+1) through (37)

16: if ‖G(Uj+1
n+1)‖ ≤ tolerance then go to Step 20

17: else go to Step 5
18: end if
19: end for
20: Update velocities U̇n+1 through (29)
21: Update displacements Un+1 = Un + dUn+1

22: end for

4. ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS

Due to the non-interpolatory properties of NURBS, essential boundary conditions in isogeometric
analysis are generally enforced in a weak sense e.g. via a penalty approach [29], the Lagrange
multiplier method [44] or Nitsche’s method [81], etc. For special cases, where the model has
simple geometries, a strong enforcement of the essential boundary conditions is also feasible. In the
following, we first present the details of the weak enforcement of the essential boundary conditions
in 4.1 and then followed by a detailed treatments of non-homogeneous displacement controlled
essential boundary conditions in 4.2.

4.1. Weak enforcement of essential boundary conditions

The essential boundary conditions of the isogeometric Kirchhoff-Love shell are expressed in terms
of midsurface displacements u and rotations Φ(t), respectively:

u− u0 = 0 x ∈ Γu, (42)

Φ(t) −Φ(t)0 = 0 x ∈ Γθ, (43)

where a subscript 0 denotes prescribed values, and where a subscript (t) represents the components
along the tangent of the boundary Γθ. The domain boundaries Γu and Γθ denote the Dirichlet
boundary of prescribed essential boundary conditions. The total domain boundary Γ follows by
unification with the Neumann boundary Γt of prescribed natural boundary conditions such that
Γ = Γu ∪ Γθ ∪ Γt and (Γu ∪ Γθ) ∩ Γt = ∅.

The governing equation (17) is extended to a formulation that enforces the displacement and
rotational essential boundary conditions in a weak sense according to a pure penalty approach:∫

A

P0 · δu dA+

∫
Γt

T0 · δu dΓ +

∫
Γu

δT · (u0 − u) dΓ +

∫
Γθ

δM(t) · (Φ(t)0 −Φ(t)) dΓ
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−
∫
A

(N : δε+ M : δκ)dA =

∫
A

ρhü · δu dA (44)

where δT and δM(t) are weight functions chosen to be δT = ε δu and δM(t) = εh
2

12 δΦ(t),
respectively, with ε representing a penalty factor. The values of penalty factor should not be too
high and can be chosen in the range of Young’s modulus as suggested in [29]. For homogeneous
essential boundary conditions where u0 = 0, Φ(t)0 = 0, the governing equations (44) simplify to:∫

A

P0 · δu dA +

∫
Γt

T0 · δu dΓ−
∫

Γu

ε δu · u dΓ−
∫

Γθ

ε
h2

12
δΦ(t) ·Φ(t) dΓ

−
∫
A

(N : δε+ M : δκ)dA =

∫
A

ρhü · δu dA . (45)

The semi-discretized equilibrium equation reads:

f − r− r(u)pen − r(θ)pen = Ma Ü (46)

where

r(u)pen =

∫
Γu

εRT · u dΓ (47)

r(θ)pen =

∫
Γθ

ε
h2

12

∂Φ(t)

∂U
·Φ(t) dΓ (48)

In terms of the generalized-α method, the effective structural equations of the shell including weak
boundary conditions follow as:

r(Un+1−αf ) + r(u)pen + r(θ)pen + MaÜn+1−αm − fn+1−αf = G∗(Un+1) = 0 (49)

which leads to the linearized form of the governing equation:

(K∗ + K(u)pen + K(θ)pen)∆Uk+1
n+1 = −G∗(U

k
n+1) (50)

where

K(u)pen =

∫
Γu

εRTR dΓ , (51)

K(θ)pen =

∫
Γθ

ε
h2

12

[
∂Φ(t)

∂U

]T ∂Φ(t)

∂U
dΓ +

∫
Γθ

ε
h2

12

∂2Φ(t)

∂U∂U
·Φ(t) dΓ . (52)

The rotation Φ(t) can be used to maintain clamped or symmetry boundary conditions along the
shell’s domain boundary [29]. The rotation and its variations are defined as:

Φ(t) = arcsin (ω · t) (53)

∂Φ(t)

∂U
=

ω,U · t√
1− (ω · t)2

(54)

∂2Φ(t)

∂U∂U
=

ω,UU · t√
1− (ω · t)2

+
(ω,U · t)(ω · t)(ω,U · t)

(1− (ω · t)2)3/2
(55)

where the vector t is the unit tangent vector along the boundary Γθ, and where

ω = A3 × (a3 −A3) , (56)
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ω,U =
∂ω

∂U
= A3 × a3,U , (57)

ω,UU =
∂2ω

∂U∂U
= A3 × a3,UU . (58)

The linearized form of the governing equation (50) is solved iteratively by a Newton-Raphson
method.

4.2. An extention to non-homogeneous (displacement controlled) essential boundary conditions

For non-homogeneous essential boundary conditions, where u0 6= 0 and Φ(t)0 6= 0, modifications
to the solution procedures in 4.1 are required. In this paper, we mainly focus on displacement
controlled boundary conditions u0 6= 0. Nevertheless, an extension to the situation of Φ(t)0 6= 0
is straightforward.

4.2.1. Weak enforcement Considering u0 6= 0, equation (44) can be formulated as:∫
A

P0 · δu dA +

∫
Γt

T0 · δu dΓ +

∫
Γu

ε δu · u0 dΓ−
∫

Γu

ε δu · u dΓ

−
∫
A

(N : δε+ M : δκ)dA =

∫
A

ρhü · δu dA (59)

where, accordingly, the semi-discretized equilibrium equation can be rewritten as:

f + f(u)pen − r− r(u)pen = Ma Ü (60)

in which the penalty contributions to the external forces f(u)pen reads:

f(u)pen =

∫
Γu

εRT · u0 dΓ . (61)

The effective structural equations of the shell can be rewritten as:

r(Un+1−αf ) + r(u)pen + MaÜn+1−αm − fn+1−αf − f(u)pen = G∗(Un+1) = 0 (62)

Similar to (38) and (50), the consistent linearization of (62) results in:

(K∗ + K(u)pen)∆Uk+1
n+1 = −G∗(U

k
n+1) (63)

which can be further rearranged as:K
(11)
∗ + K

(11)
(u)pen K

(12)
∗

K
(21)
∗ K

(22)
∗

[∆U
(1),k+1
n+1

∆U
(2),k+1
n+1

]
= −

[
G

(1)
∗ (Uk

n+1)

G(2)(Uk
n+1)

]
(64)

where superscript (1) represents the degrees-of-freedom associated to the displacement controlled
boundary Γu, where superscript (2) represents the rest of the degrees-of-freedom, where
∆U

(i),k+1
n+1 = U

(i),k+1
n+1 −U

(i),k
n+1 , i ∈ {1, 2}, and where K

(11)
(u)pen is the penalty stiffness matrix

defined in (51) which contributes only at the first iteration (k = 0) of each load step.
For the first iteration of each load step, the residual G

(1)
∗ (U0

n+1) is:

G
(1)
∗ (U0

n+1) = r
(1)
(u)pen − f

(1)
(u)pen = −

∫
Γu

εR(1)T ·∆un+1 dΓ (65)

where ∆un+1 = (u0 − u)n+1 ∈ R3 is the displacement increment of the Dirichlet boundary at the
current load step, and where we assume that the equilibrium is satisfied at the end of the previous
step n.
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After solving (64) for the first iteration, the increments ∆U
(1),1
n+1 and ∆U

(2),1
n+1 are obtained. Then

the first estimate of the algorithmic external forces is computed as:

f
(1),1
n+1−αf = K

(11)
∗ ∆U

(1),1
n+1 + K

(12)
∗ ∆U

(2),1
n+1 + r

(1),0
n+1−αf

+M(11)
a Ü

(1),0
n+1−αm + M(12)

a Ü
(2),0
n+1−αm . (66)

For subsequent iterations (k ≥ 1), the displacement increment ∆U
(1),k+1
n+1 is set to be zero, only

∆U
(2),k+1
n+1 is updated. Besides, the penalty terms in (62) are not required any more, since the

displacement boundary conditions are already satisfied in the first iteration. Therefore, the linearized
equation (64) reduces to:[

K
(11)
∗ K

(12)
∗

K
(21)
∗ K

(22)
∗

][
0

∆U
(2),k+1
n+1

]
= −

[
G(1)(Uk

n+1)

G(2)(Uk
n+1)

]
(67)

where

G(2) = r
(2),k
n+1−αf + M(21)

a Ü
(1),k
n+1−αm + M(22)

a Ü
(2),k
n+1−αm . (68)

Substitution of (68) into (67) determines the increment ∆U
(2),k+1
n+1 which is used to update the

external force:

f
(1),k+1
n+1−αf = K

(12)
∗ ∆U

(2),k+1
n+1 + r

(1),k
n+1−αf + M(11)

a Ü
(1),k
n+1−αm + M(12)

a Ü
(2),k
n+1−αm . (69)

Based on the above solution procedure, the nonlinear dynamic equations subjected to non-
homogeneous (displacement controlled) essential boundary conditions can be solved effectively.

4.2.2. Strong enforcement as a special case For special cases, such as straight boundaries, non-
homogeneous (displacement controlled) essential boundary conditions can be enforced in a strong
sense on basis of prescribed displacement degrees-of-freedom at the boundary matching control
points. The basic idea is similar to the weak approach, where the linearized governing equation is
rearranged as: [

K
(11)
∗ K

(12)
∗

K
(21)
∗ K

(22)
∗

][
∆U

(1),k+1
n+1

∆U
(2),k+1
n+1

]
= −

[
G(1)(Uk

n+1)

G(2)(Uk
n+1)

]
(70)

Given the displacement increments ∆U
(1),1
n+1 for the first iteration of each time step, we have for the

second row of (70):

∆U
(2),1
n+1 =

(
K

(22)
∗

)−1 (
−G(2)(U0

n+1)−K
(21)
∗ ∆U

(1),1
n+1

)
=
(
K

(22)
∗

)−1 (
−K

(21)
∗ ∆U

(1),1
n+1

)
(71)

where G(2)(U0
n+1) = 0 for the first iteration.

Based on the solution of ∆U
(2),1
n+1 , the total displacement and accelerations of the shell are updated

and the first estimation of the external force can be computed according to (66). For subsequent
iterations, the iterative procedure is similar to Eqs. (67)-(69).

5. LEAST-SQUARES SURFACE FITTING OF GEOMETRIC IMPERFECTIONS

In this section, the least-squares fitting of the imperfect shell surfaces based on tensor-product B-
spline surfaces is briefly described. Two error measures are presented which are used to evaluate the
fitting quality.
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The least-squares surface fitting problem can be stated as follows: Given a set of point data
{Ck}Nk=1 in R3, we need to find corresponding parametric coordinates {(ξ1, ξ2)k}Nk=1 in [0, 1]2

and control points {Pi}ni=1 of the B-spline surface X̄ such that the following least-squares sum is
minimized

N∑
k=1

‖X̄((ξ1, ξ2)k)−Ck‖2 + λR(P) (72)

where X̄ is defined in (18), R(P) is a regularization term, herein chosen as:

R(P) =

∫∫
[0,1]2

(‖X̄ξ1ξ1‖2 + 2‖X̄ξ1ξ2‖2 + ‖X̄ξ2ξ2‖2)dξ1dξ2, (73)

and λ is the non-negative weight used to balance the fitting error and the smoothness of the resulting
surface. In our computations, we set λ = 10−6.

Suppose that the knot vectors and orders of the B-spline surface are predefined, then the
parametric coordinates (ξ1, ξ2)k ∈ [0, 1]2 with respect to each point data Ck can be obtained by
well established methods, such as Floater’s parameterization method [82] etc. Consequently, the
control points of the B-spline surface can be obtained by minimizing the least-squares sum (72),
which leads to the following linear equations:

Q P = q (74)

where the matrix Q and vector q have the form:

Q =

N∑
k=1

RT ((ξ1, ξ2)k)R((ξ1, ξ2)k)

+λ

∫∫
[0,1]2

(
∂2R

∂ξ2
1

∂2RT

∂ξ2
1

+ 2
∂2R

∂ξ1∂ξ2

∂2RT

∂ξ1∂ξ2
+
∂2R

∂ξ2
2

∂2RT

∂ξ2
2

)
dξ1dξ2 ,

q =

N∑
k=1

RT ((ξ1, ξ2)k)Ck .

(75)

We note that the regularization term ensures the unique solution of the least-squares fitting problem,
since the first part of the equation (75) can be singular if a certain basis function vanishes on all the
data points (i.e., no data points locate in its support). At the same time, this terms also ensures the
smoothness of the resulting surface.
In order to evaluate the fitting quality of the resulting surface, we use a mean squared error measure
(MSE) defined by

MSE =
1

N

N∑
k=1

‖X̄((ξ1, ξ2)k)−Ck‖2 (76)

and a maximum error measure (ME) given by

ME = max
k∈{1,2,...,n}

‖X̄((ξ1, ξ2)k)−Ck‖. (77)

Both error measures are considered in the following to ensure a highest level of accuracy.

6. NUMERICAL EXAMPLES

In this section, we test the efficiency and accuracy of the proposed method with several
numerical examples including tumbling cylinder, cylindrical panel, conical shell and cylindrical
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shell structures. The influence of numerical dissipation and the order of the approximation basis on
the dynamic responses of shell structures are studied systematically. Besides, both man-made and
measured geometric imperfections are introduced and their effects on the dynamic shell response is
studied. For the dynamic analyses, the following adaptive time step size was used:

∆t = (I0/In)∆tp, In < Imax (78)

where ∆tp and In are the time step size and number of iterations of the last time step, respectively,
where I0 and Imax are the desired and the maximum allowed number of iterations, respectively. If
In ≥ Imax, the current time step was re-computed with step size ∆tp/2. Alternatively, an adaptive
time step size as proposed in [64] may also be used:

∆t =


(

2−
(
In−1
I0−1

)2
)

∆tp, In < I0(
1− 1

2

(
In−I0
Imax−I0

)2
)

∆tp, In ≥ I0 .
(79)

We note that the adaptive time step size of (79) was adopted in sections 6.1-6.3, and the adaptive
time step size of (78) was adopted in sections 6.4-6.5. The penalty factor ε in (45) and (59) was
chosen in the following examples as ε = 100E, where E is Young’s modulus.

0 0.5 1 1.5

5

f 
(t

)

t (s)

R = 7.5 m H = 3 m

ρ = 1 kg/m3 h = 0.02 m

E = 2×108 Pa ν = 0.3

x

y

z

θ

R

H

C B

AD

2

Figure 2. Tumbling cylinder: geometry, material properties and time histories of line loading.

6.1. Tumbling cylinder

In this example, the dynamic behavior of a tumbling cylinder [73] is studied to test the numerical
stability and energy conservation properties of the proposed method. The geometric descriptions and
material properties of the cylinder are shown in Figure 2, where no kinematic boundary conditions
are enforced. The cylinder is discretized with 32× 3 elements with p1 = p2 = 3. For the time step
size control, we set I0 = 8 and Imax = 15. Besides, we set an upper and lower bound for the time
step size which is ∆tpmax = 10−2s and ∆tpmin = 10−4s. The cylinder was subjected to four line
loads at the line segments A, B, C and D. These line forces are expressed as:

FA =
4

3
[0,−1,−1]T f(t), at θ = 0

FB =
4

3
[1, 1, 1]T f(t), at θ = π/2

FC =
4

3
[1, 1, 1]T f(t), at θ = π

FD =
4

3
[0,−1,−1]T f(t), at θ = 3π/2
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where f(t) is the loading function defined as:

f(t) =


10t if t ≤ 0.5

5− 10(t− 0.5) if 0.5 < t ≤ 1

0 if t > 1

Figure 3 shows the time history of energy for the tumbling cylinder problem, where the spectral
radius was set to ρ∞ = 0.92. It was found that the modified generalized-α method predicted almost
constant energy even with a slight numerical dissipation. Higher values of ρ∞ lead to numerical
stability problems, possibly due to the introduced high frequency modes of the cubic NURBS basis
functions. Figure 4 illustrates the tumbling of the cylinder, with the progressions of the deformed
configurations shown sequentially from left to right.
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Figure 3. Tumbling cylinder: changes of energy.

Figure 4. Tumbling cylinder: sequence of deformed configurations.
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Figure 5. Thin cylindrical panel: geometry, boundary conditions, material properties and time histories of
point loading.
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6.2. Snap-through of thin cylindrical panel

In the second example, the snap-through of a thin cylindrical panel subjected to a centrally located
point load P is studied. This simple model was chosen to test the implemented advancements on
their reliability and to study the effect of numerical dissipation on the overall solution stability and
solution quality. The geometry and material properties of the cylindrical panel as well as the time
histories of P are shown in Figure 5. The cylindrical panel was fixed at the two straight boundaries
and free at the circular boundaries. Different values of ρ∞ in the generalized-α time integration
method were chosen to study its high-frequency damping effects. Moreover, the influence of
different mesh sizes and orders of the approximation basis were considered to obtain an optimal
model configuration. For the time step size control, we set I0 = 8 and Imax = 15. Besides, we set a
upper and lower bound for the time step size which are ∆tpmax = 10−2s and ∆tpmin = 10−6s.

Figures 6-8 show the convergence properties of the cylindrical panel with a square, cubic, and
quartic base, respectively, with the spectral radius set to ρ∞ = 0.7. The panels with quadratic basis
show stronger oscillations and slower convergence compared to their cubic and quartic counterparts.
This behavior relativizes as the discretization becomes more refined, suggesting the use of more
elements for p1 = p2 = 2. For the quartic-based panel, even a mesh with 9× 9 elements was
sufficient to obtain a convergent solution. It should be mentioned that the dynamic responses of
the shell was slightly different at the snap-through stage, mainly due to the different meshes used
(cf. Figures 7-8). Nevertheless, the pre-buckling and post-buckling responses of the shell showed
excellent convergence properties for cubic and quartic basis.
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Figure 6. Thin panel: convergence study with orders p1 = p2 = 2.
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Figure 7. Thin panel: convergence study with orders p1 = p2 = 3.
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Figure 8. Thin panel: convergence study with orders p1 = p2 = 4.
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Figure 9. Thin panel (p1 = p2 = 2): (a) comparison of dynamic responses with different ρ∞. (b) comparison
of time step sizes.

Figures 9(a) - 11(a) show the effects of the numerical dissipation on the dynamic response of the
panel with p1, p2 ∈ {2, 3, 4}. It can be seen that stable results were obtained with ρ∞ = 0.6 and 0.7,
while for ρ∞ = 0.8 the panel oscillated strongly, which became even more evident for p1 = p2 = 4.
It is highlighted that for ρ∞ = 0.8 the dynamic analysis of the thin panel fails due to very small time
step sizes. The time histories of the step size is depicted in Figures 9(b) - 11(b). The required step
size for ρ∞ = 0.8 was extremely small compared to the cases of ρ∞ = 0.6 and 0.7. Moreover, the
increase in numerical dissipation (decrease in ρ∞) had a larger effect on the time step size of the
quartic model suggesting that a higher artificial dissipation level is required when higher order basis
functions are used.

In Figure 12(a), the dynamic responses of the IGA shell are compared with the reference FEM
results [64] obtained with generalized-α method. It was found that the reference solution showed
much higher oscillations than the IGA results and predicted slightly lower displacements after snap
through. Besides, Figure 12(b) reconfirmed the need for a higher artificial dissipation when using
higher order approximation to counteract the decreasing step size.

In Figure 13 is a comparison showing the difference in the dynamic responses of the shell
when using the algorithmic internal force (33) and (34). The shell was discretized with 17× 17
cubic elements, and the spectral radius was set to ρ∞ = 0.7. It was found that the model with
algorithmic internal force (33) fails to predict the correct snap-through behavior, which highlights
the importance of choosing appropriate algorithmic internal forces.
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Figure 10. Thin panel (p1 = p2 = 3): (a) comparison of dynamic responses with different ρ∞. (b)
comparison of time step sizes.
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6.3. Snap-through of a conical shell

With the third example, the snap-through response of a conical shell was studied to confirm the
influence of the fundamental modeling factors and numerical dissipation. The geometric description,
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boundary conditions and material properties are depicted in Figure 14. Two load cases were
considered in this example where the top edge was subjected (a) to an imposed displacement and
(b) to an imposed line force, both in −z direction. The time history for both load cases is shown in
Figure 14. The desired and maximum allowed number of iterations for this example are I0 = 8 and
Imax = 15. Besides, the upper and lower bound of the time step size for the two load cases are: (a)
∆tpmax = 2× 10−3s, ∆tpmin = 10−5s and (b) ∆tpmax = 10−2s, ∆tpmin = 10−5s.
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Figure 14. Conical shell: geometry, boundary conditions, material properties and time history of external
loading

For the case of a line force loading, we used 48× 15 elements with p1 = p2 = 3, while for
p1 = p2 = 2, a discretization of 60× 20 elements was adopted. Figures 15(a) - 16(a) show the
load-displacement responses of the conical shell using a quadratic and a cubic basis, respectively,
considering different values of ρ∞. For a comparison of the results, the dynamic responses at the
locations A = [−r, 0, H] and B = [0,−r,H] were selected.
The conical shell, which uses a quadratic approximation basis, buckled at a load level of 1.55×
106N - slightly larger than in the cubic case with a buckling load of 1.48× 106 N. Besides, Figures
15(b) - 16(b) show the time step sizes of the conical shell during snap-through. For both values,
ρ∞ = 0.6 and ρ∞ = 0.7, the shell which used a cubic approximation basis led to smaller time step
sizes than for the quadratic case. In Figure 17 contour plots of the conical shell at various time steps
are shown. The buckling initiates at the upper rim of the conical shell and propagates through the
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whole structure. The snap-through phenomenon was initiated around the time t = 1.083 s and ended
around the time t = 1.100 s, when a completely reversed configuration was reached. For animations
of the complete response, we refer the reader to [83].

For the load case of imposed displacements, two mesh configurations of 48× 15 and 60× 20
were considered using a quadratic approximation basis. In addition, a cubic approximation basis
with 48× 15 elements, similar to the line load case, was adopted. Figures 18(a) and 19(a) show the
dynamic responses of the shell upper edge for the quadratic and cubic case, respectively. It can be
observed from Figure 19(a) that, the shell with cubic basis was able to capture the initial buckling
load with a coarse mesh of 48× 15 elements. While for the quadratic basis, a much finer mesh of
60× 20 elements was required. The buckling loads predicted by our IGA model and a reference
FEM model using 80× 20 elements is listed in Table I and reveal good agreement with the FEM
solutions. For the cubic IGA model, the buckling load is slightly lower compared to the reference
solutions obtained from dynamic and static arc-length solutions. Remarkable in this comparison is
the point of time when buckling occurs. The IGA model buckles after almost half the time found
for the FEM model which can be traced back to larger time steps, especially at the beginning of
the analysis, cf. Figure 18(b) and Figure 19(b). In addition, it should be noted that the cubic shell
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Figure 17. Contour plots of the conical shell at different time steps: line force, 48× 15 elements, p1 = p2 =
3, ρ∞ = 0.6.
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Figure 18. Conical shell under prescribed displacement (p1 = p2 = 2): (a) comparisons of dynamic
responses with ρ∞ = 0.6 and 0.7. (b) comparisons of time step sizes.

suffered from high frequency oscillations during the snap-through. This behavior became even more
severe for ρ∞ = 0.7, cf. Figure 20. In contrast, the quadratic shell showed less oscillations and in
comparison exhibited relatively large time step sizes, cf. Figures 18(b), 19(b) and 20. Again a higher
numerical dissipation was required for the higher order model to obtain an appropriate time step size.

Table I. Comparison of buckling loads for the load case of imposed displacements on the upper rim of the
conical shell.

method IGA FEM [64]
p=2 p=3 Generalized-α HHT-α static arc-length

buckling load (kN) 10185 9640 10247 10021 9960
buckling time (s) 0.03 0.028 0.048 0.047 0.051
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Figure 20. Conical shell under prescribed displacement: (a) comparisons of dynamic responses with ρ∞ =
0.7. (b) comparisons of dynamic responses with ρ∞ = 0.6.

In Figures 21 and 22 contour plots of the conical shell at different time steps for the quadratic and
cubic model, respectively, are depicted. In contrast to the force line loading where the upper rim of
the conical shell was allowed to move freely (cf. Figure 17), the prescribed displacement boundary
conditions impose strong restrictions on the movement of the upper rim, hence, a local buckling
phenomenon was frequently observed to release elastic energy during snap-through. In addition, the
cubic model behaved somewhat softer and exhibited pronounced local buckling compared to the
quadratic model, cf Figure 21 (t = 0.504 s) and Figure 22 (t = 0.466 s), respectively.

6.4. Buckling of axially loaded cylinder

With this example, we consider the dynamic buckling of a cylindrical shell. The geometry, material
properties and boundary conditions as shown in Figure 23 were taken from [84]. This example
originates from Yamaki’s experiments [85], who manufactured these cylinders carefully with
polyethylene terephthalate in order to remove geometric imperfections. The cylinder was subjected
to an imposed displacement on its top circular edge which was increased linearly from 0 to 1 mm
within a time span of 2 s. Both cylinders with perfect geometry and imposed imperfections were
investigated. The spectral radius was set to be ρ∞ = 0.6. In addition, the desired and maximum
allowed number of iterations were set to be I0 = 8 and Imax = 15. The theoretical critical buckling
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Figure 21. Contour plots of the conical shell at different time steps: imposed displacement, 60× 20 elements,
p1 = p2 = 2, ρ∞ = 0.7.
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Figure 22. Contour plots of the conical shell at different time steps: imposed displacement, 48× 15 elements,
p1 = p2 = 3, ρ∞ = 0.7.

load of the cylinder is 1289.9 N, which was found according to [86]:

Pcr =
2π h2E√
3(1− ν2)

. (80)
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Figure 24. Axially loaded cylinder: (a) convergence of cubic IGA model with ρ∞ = 0.6. (b) comparison of
dynamic responses with reference solutions.

6.4.1. Cylinder without geometric imperfections For the perfect cylinder, a convergence study was
performed for the IGA model and compared to reference FEM solutions [64], cf Figure 24. From
Figure 24(a) it can be seen that the IGA solution converged to a buckling load of 1284.9 N with a
mesh of 108× 30 cubic elements. In Figure 24 (b) a comparison of the IGA results with reference
solutions as well as experimental results are depicted.

The buckling loads of the different IGA models agree very well with solutions found with
ABAQUS [87] in which 314× 57 S4R elements were used. The ABAQUS solution shows a
small plateau after the initial buckling load is reached, while the IGA model shows an immediate
loss of load-carrying capacity, leading to a jump from an asymmetric mode to a rhombic mode
(see configurations B-F in Figure 25). The FEM reference solution used 400× 80 elements in
combination with a generalized-α time integration scheme and resulted in a slightly higher buckling
load and an even more pronounced plateau after the buckling load was reached.

The experimental buckling load of the cylinder was much lower than numerical predictions which
is due to the inherent geometric imperfections of the manufactured cylinder. Nevertheless, this
example shows that the IGA method can capture the theoretical buckling load with a much smaller
number of elements compared to the FEM reference solutions, thanks to the geometric accuracy and
the high order continuous basis.
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Figure 25. Contour plots of the axially loaded cylinder at different time steps: imposed displacement,
108× 30 elements, p1 = p2 = 3, ρ∞ = 0.6

In addition, the IGA model was able to capture the mode type (m,n) = (2, 12) after the initial
snap-through of the cylinder (see configuration F in Figure 25), where m and n denotes the number
of half-waves in the axial direction and the number of full-waves in the circumferential direction,
respectively. When the applied displacement increased, the IGA model jumped to a mode type of
(m,n) = (2, 11) (see configuration I in Figure 25) which agreed well with the experimental results,
cf. Figure 24 (b). We note, that the ABAQUS model omitted the buckling mode of (m,n) = (2, 11)
and jumped directly to the mode of (m,n) = (2, 10). The reference FEM model omitted the buckling
mode of (m,n) = (2, 12) and jumped to the mode of (m,n) = (2, 11).

6.4.2. Cylinder with geometric imperfections In order to study the influence of geometric
imperfections on the dynamic buckling behavior of the cylinder, various types of initial geometric
imperfections can be introduced, such as single eigenmodes or a factorized sum of several
eigenmodes. In [84], it is reported that, the first 18 eigenmodes of the cylinder can be described
by the following half-wave and full wave numbers: m = 13 and n = 0, · · · , 7, and m = 12 and
n = 0, · · · , 9. Following the approach of [64], the geometric imperfections can be described by the
factorized sum of the first 18 eigenmodes which is represented by the following function:

w̄(θ, z) =
h

100

(
13∑

m=12

sin
(mπz
H

)
+

7∑
n=1

sin(nθ) sin

(
13πz

H

)
+

9∑
n=1

sin(nθ) sin

(
12πz

H

))
(81)

where z is the axial coordinate and θ denotes the circumferential angle, where the amplitude of
the geometric imperfection is set to be h

100 . The geometric imperfection w̄, shown in Figure 26, is
then added to the cylinder radius to generate a set of data points Ck. Next, the IGA cylinder with
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Figure 26. Buckling of axially loaded cylinder: contour plots of the geometric imperfections.

geometric imperfections is obtained through a least-squares surface fitting approach presented in
section 5.
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Figure 27. Convergence study of geometric imperfection modeling of cylinder: (a) square root of mean
square error. (b) absolute value of maximum error.

A set of cubic B-spline surfaces with 50× 16, 100× 32, 120× 42, 140× 48, 200× 64 and
400× 128 elements were generated to represent the imperfection model. The convergence of the
approximation error for the different meshes is shown in Figure 27 for the two error measures
of section 5 revealing that a mesh of 120× 42 elements (16605 DOF) is sufficiently accurate to
represent the geometric imperfections given by (81). The contour plots of the approximation error
using 120× 42 elements is shown in Figure 28, where the following norm is adopted:

ε =
100 |X̄− X̄exact|

h
(82)

where X̄exact is the target imperfection surface. It was found that, the maximum approximation error
is around 0.1% of the shell thickness (10% of the imperfection amplitude), located at the position of
the largest geometric imperfections.

In Figures 29 (a) and (b) the convergence studies of the imperfect cylindrical shell using IGA
and ABAQUS, respectively, is depicted. The IGA model predicted the buckling load with a mesh of
120× 42 elements, while for the ABAQUS model a converged buckling load was difficult to predict
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Figure 29. Axially loaded imperfect cylinder: (a) convergence of IGA method using cubic basis and
ρ∞ = 0.6. (b) convergence of ABAQUS method using HHT-α method.

unambiguously even with a fine mesh of 628× 114 elements. This confirms the prominent role of
geometric imperfection modeling in the analysis of shell buckling. The IGA model fully exploits the
smooth and higher order continuous geometry representation which in contrast to the linear facet
elements used in ABAQUS seems to be a decisive factor for the reliability of the analysis. We note,
that with a mesh of 120× 42 elements, both key factors, imperfection fitting and dynamic buckling
load, were reliably and well predicted with the IGA model.

In Figure 30 a comparison of the dynamic response of the imperfect cylinder obtained with IGA,
reference FEM solutions as well as experiments is illustrated. The buckling loads of each method
were: (i) 830.7 N for IGA method, (ii) 820.2 N for ABAQUS, (iii) 890.3 N for the reference FEM
model with generalized-α method, (iv) 808.3 N for the reference FEM model with Bossak method
and (v) 911.2 N for the experiment. We note, that with geometric imperfections the buckling loads
decreased dramatically compared to the perfect cylinder (cf. Figure 24 (b)), which signifies a key
role of considering geometric imperfections in shell buckling. Compared to the experimental results,
the IGA and FEM reference solutions were slightly lower (about 8%), which we attribute to the
shape of the geometric imperfections introduced in (81).

In Figure 31 the contour plots of the imperfect cylinder during buckling is shown. It was observed
that buckling started at the local dimple (see configuration B in Figure 31), then spreaded out
in the circular direction (see configurations D-E in Figure 31) and finally arrived at a mode of
(m,n) = (2, 13) (see configuration F in Figure 31). We note that the slight deviation of the kink
mode compared to the experiments could be due to the shape of the geometric imperfections
introduced in (81). Nevertheless, the evolution of buckling modes predicted by IGA method agree
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Figure 31. Contour plots of the axially loaded imperfect cylinder at different time steps: imposed
displacement, 120× 42 elements, p1 = p2 = 3, ρ∞ = 0.6.

well with the reference FEM solutions (blue curve in Figure 30), in which the shell jumped to
a buckling mode of (m,n) = (2, 12) at uz = 0.27 mm. The further buckling mode transition was
exactly the same as for the perfect cylinder and experiment. In contrast, the ABAQUS solution
shows a jump directly from the initial buckling mode to the mode of (m,n) = (2, 11) (gray curve
in Figure 30).

6.5. Buckling of cylinder with measured geometric imperfections

We close the example section with a cylinder under compression for which a measured imperfection
model is available. The cylinder was subjected to a uniform imposed displacement along the upper
rim, and clamped along both the upper and bottom rims. The loading rate of the upper rim was
−0.5mm/s. The geometry of the model is similar to the previous example (cf. Figure 23), with
R = 101.6 mm, h = 0.1128 mm and H = 171.45 mm. The material properties of the cylinder were:
E = 104110 MPa, ν = 0.3 and ρ = 8.96× 10−6 kg/mm3. In addition, the desired and maximum
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allowed number of iterations were set to be I0 = 8 and Imax = 15. Real geometric imperfection
data for the cylinder was provided by the imperfection model data base of TU Delft, NL [88], from
which measurements of a series of cylinders from a common manufacturing process were available.
The cylinder, labeled A13, was taken exemplarily from [88]. The real imperfect geometry of the
cylinder was provided in terms of the perfect structure and a series of two-dimensional Fourier
coefficients to allow for a simple reconstruction of the imperfection data. The half-wave cosine
representation of the geometric imperfections involved two sets of m× n harmonic components
Akl and Bkl according to the following Fourier representation:

w̄(z, θ, ) = h

m∑
k=0

Ak0 cos

(
kπz

H

)
+ h

m∑
k=0

n∑
l=1

cos

(
kπz

H

)
(Akl cos(lθ) +Bkl sin(lθ)) (83)

where the Fourier coefficients of the cylinder A13 are provided in the Table II of Appendix A. The
measured imperfection field w̄, shown in Figure 32, was added to the perfect cylinder to generate
the real geometries of the cylindrical shell.
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Figure 32. Cylinder with measured geometric imperfections: contour plots of the geometric imperfections.

A set of cubic B-spline surfaces with 60× 16, 80× 22, 100× 27, 120× 32, 140× 38, 160× 43
and 240× 64 elements were generated to represent the imperfection model. The convergence of the
approximation error for the different meshes is shown in Figure 33. A mesh of 140× 38 elements
provided a sufficiently accuracy to represent the geometric imperfections given by (83). The contour
plots of the approximation error using 140× 38 elements is shown in Figure 34, where the maximum
approximation error is around 0.09% of the shell thickness. We note that the following norm is
adopted in Figure 34:

ε =
|X̄− X̄exact|

h
(84)

In Figure 35(a), the dynamic response of the isogeometric model using different numbers of
elements is shown. A mesh of 140× 38 elements was sufficient to predict the buckling load of the
imperfect cylinder A13 at 4693 N. Figure 35(b) shows a comparison of the IGA and ABAQUS
solutions, where 212× 57 elements were used with ABAQUS. The buckling load predicted from
the ABAQUS model was 4674 N, which fits well the IGA solution. Regarding the buckling modes,
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the cylinder started to buckle near its upper rim where several local dimples are initiated (see
configuration A in Figure 36). Then, the local buckling spreaded out in both circular and axial
directions (see configurations B-C in Figure 36). Finally, small buckling modes merged with each
other until a stable buckling mode (m,n) = (2, 13) was reached (see configurations D-F in Figure

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



31

A (t = 0.2157s) B (t = 0.2161 s) C (t = 0.2167 s)

D (t = 0.2174 s) E (t = 0.2214 s) F (t = 0.2306 s)

U_max

2.0e-11

1.7

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8e-11

2.0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.3e-10

1.2

0.2

0.4

0.6

0.8

1

6.3e-10

0.72

0.1

0.2

0.3

0.4

0.5

0.6

1.0e-09

0.58

0.1

0.2

0.3

0.4

0.5

1.2e-09

0.13

0.02

0.04

0.06

0.08

0.1

0.12

U_maxU_max

U_max U_max U_max

Figure 36. Contour plots of the cylinder A13 at different time steps: imposed displacement, 140× 38
elements, p1 = p2 = 3, ρ∞ = 0.6.

36). We note that both, the IGA and the ABAQUS model well predicted the stable buckling mode
of (m,n) = (2, 13).

7. SUMMARY AND CONCLUSIONS

In this paper, we proposed and tested a comprehensive framework for dynamic buckling analysis
of shells based on isogeometric analysis. It includes a rotation-free Kirchhoff-Love shell element,
a generalized-α time integration scheme with controllable numerical dissipation and applies an
approach to enforce essential boundary conditions in a weak sense that allows unconstrained
NURBS modeling. A least-squares surface fitting approach with corresponding error measures
was introduced to take geometric imperfections into account. The imperfection model is based on
B-spline surfaces to support the underlying isogeometric paradigm of seamlessly merging CAD
modeling and numerical analysis and to profit from the overall smoothness properties of splines for
an undisturbed geometric imperfection model.

We tested and assessed the performance of our analysis framework with a series of numerical
examples that involve snap-through and collapse phenomena. We studied the energy conserving
properties of the method using an example of a tumbling cylinder where a nearly constant energy
is obtained with a small numerical dissipation. We investigated the modeling error for different
discretizations for a thin curved panel and a conical shell structure, varying the number of elements
and the order of the approximation basis. Numerical dissipation was assessed on basis of the time
step size for different NURBS which confirmed the need for higher dissipation with increasing
order of the approximation basis to damp properly the influence of higher frequencies. Compared
with a classical FEM shell solution the IGA model was capable to remove significant parts of
disturbing oscillations of the buckling load solution. In all computations a significantly larger time
step size was possible compared to FEM reference models without compromising the reliability
of the computation and solution quality. A penalty based weak enforcement approach for essential
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boundary conditions was tested with a displacement-controlled buckling test for the conical shell
structure which very well agreed for the predicted buckling load with FEM results from literature.

For an example of a perfect cylindrical shell, we demonstrated superior convergence properties of
the IGA model in terms of initial buckling loads and buckling modes compared to FEM reference
solutions. The IGA model well captured a mode jumping behavior that was in perfect agreement
with the experimental results. Considering geometric imperfections, a B-spline-based least squares
surface fitting could be applied directly in the dynamic buckling analysis loop. The generated
imperfection model led to an accurate prediction of the buckling load and the corresponding mode
shape. In contrast, the determination of the buckling load predicted by ABAQUS showed extreme
mesh sensitivity, indicating a severe deficiency in the linear facet elements used to represent the
ABAQUS imperfection model.

Finally, we demonstrated reliability and accuracy of the proposed framework using a cylinder
with measured geometric imperfections. Both, buckling load and buckling modes were well
captured with a significantly smaller number of elements compared to the ABAQUS reference
solutions. Future research should focus on studying the dynamic behavior of shell structures with
complex geometries where trimming and coupling of multiple patches is required.
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71. Brank B, Briseghella L, Tonello N, Damjanić F. On non-linear dynamics of shells: implementation of energy-
momentum conserving algorithm for a finite rotation shell model. International Journal for Numerical Methods in
Engineereing 1998; 42:409–442.

72. Kuhl D, Crisfield M. Energy conserving and decaying algorithms in non-linear structural dynamics. International
Journal for Numerical Methods in Engineering 1999; 45:569–599.

73. Simo J, Tarnow N. A new energy and momentum conserving algorithm for the nonlinear dynamics of shells.
International Journal for Numerical Methods in Engineering 1994; 37:2527–2549.

74. Simo J, Rifai M, Fox D. On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for
non-linear dynamics. International Journal for Numerical Methods in Engineering 1992; 34:117–164.

75. Kuhl D, Ramm E. Generalized Energy-Momentum Method for non-linear adaptive shell dynamics. Computer
Methods in Applied Mechanics and Engineering 1999; 178:343–366.

76. Vu-Quoc L, Tan X. Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics. Computer
Methods in Applied Mechanics and Engineering 2003; 192:1017–1059.

77. Armero F, Petocz E. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact
problems. Computer Methods in Applied Mechanics and Engineering 1998; 158:269–300.

78. Armero F, Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear
dynamics. Part II: second-order methods. Computer Methods in Applied Mechanics and Engineering 2001;
190:6783–6824.

79. Gebhardt C, Romero I, Rolfes R. A new conservative/dissipative time integration scheme for nonlinear mechanical
systems. Computational Mechanics 2020; 65:405–427.

80. Piegl L, Tiller W. The NURBS book - Monographs in Visual Communication. Springer-Verlag Publishing Company,
Inc.: Heidelberg, 1997.

81. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E. Weakly enforced essential boundary conditions for
NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. International Journal
for Numerical Methods in Engineering 2013; 95:811–846.

82. Floater MS. Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric
Design 1997; 14(3):231–250.

83. Guo Y. Complete Animations of Buckling Processes. Available from:
https://sites.google.com/site/nuaayujieguo/research/structural-stability 2022; .

84. Kobayashi T, Mihara Y, Fujii F. Path-tracing analysis for post-buckling process of elastic cylindrical shells under
axial compression. Thin-Walled Structures 2012; 61:180–187.

85. Yamaki N. Elastic Stability of Circular Cylindrical Shells. North-Holland, Netherlands, 1984.
86. Timoshenko S. Theory of elastic stability. McGraw-Hill, New York, 1936.
87. Hibbit, Karlsson, Sorensen. ABAQUS/Standard Analysis User’s Manual. Hibbit, Karlsson, Sorensen Inc.: USA,

2007.
88. Arbocz J, Abramovich H. The initial imperfection data bank at the Delft University of Technology, Part I. Technical

Report Technical Report LR-290, Delft University of Technology 1979.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme


