Modulhandbuch Umwelt- und Verfahrenstechnik

Chemische Reaktionstechnik								
Modulnummer 22041	Workload	Präsenzzeit	Selbststudium	Studiensemester	Angebot im	Dauer		
22042	180 h	75 h	105 h	4. Semester	SO-SE	1 Semester		
Lehrveranstaltungen		Credits	Zuordnung zu den Curricula					
a) Vorlesung 2 SWSb) Übung 1 SWSc) Praktikum 2 SWS		6 CP	Bachelorstudien	gänge: UVT				

Stand: September 2020

1 Lernergebnisse (learning outcomes) / Kompetenzen

Die Studierenden können

- Umsatzberechnungen auf der Grundlage der Stöchiometrie, der Reaktionskinetik sowie der Verweilzeitverteilung idealer und realer Reaktoren durchführen
- die Gleichgewichte von reversiblen Reaktionen auf der Grundlage des MWG sowie der chemischen Thermodynamik berechnen
- Reaktionsenthalpien berechnen
- Massen- und Energiebilanzen zur Reaktorberechnung aufstellen und Lösungsansätze unter vereinfachten Bedingungen (adiabat, isotherm, stationär) formulieren

2 Inhalte

- Experimentelle Ermittlung und Berechnung von Verweilzeitverteilungen idealer und realer Reaktoren auf der Grundlage des Zellenmodells sowie des Dispersionsmodells
- Berechnung von Produktzusammensetzungen chemischer Reaktionen mit Hilfe der Stöchiometrie
- Aufstellung von Reaktionsgeschwindigkeitsgleichungen für einfache und komplexe Reaktionen
- Experimentelle Ermittlung reaktionskinetischer Daten
- Berechnung von Umsätzen für reale Reaktoren auf der Grundlage von Verweilzeitverteilung und bekannter Reaktionskinetik
- Berechnung von Gleichgewichten reversibler Reaktionen mit Hilfe des Massenwirkungsgesetzes sowie der freien Enthalpie
- Heterogen katalysierte Reaktionen: Grundlagen, Kinetik und Mechanismen
- Aufstellen von Massen- und Energiebilanzen für chemische Reaktionen
- Verhalten von idealen und realen Reaktoren

3 Lehrformen

- Vorlesung (a)
- Seminaristischer Unterricht und Übungen (b)
- Praktische Übungen (c)

4 Empfohlene Voraussetzungen

• Allgemeine Chemie

5 Prüfungsformen

- schriftliche (Dauer 120 Minuten) oder mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn der Lehrveranstaltung bekannt gegeben (Modulprüfung).
- Kurztests zur Überprüfung der Vorbereitung auf das Praktikum, schriftliche Protokolle zur Versuchsdurchführung und –auswertung (Teilprüfung)

6	Voraussetzungen für die Vergabe von Leistungspunkten				
	bestandene Modulprüfung (60%)				
	Teilprüfung (40%)				
7	Modulverantwortliche(r)				
	Prof. Dr. S. Kaluza				
8	Sprache				

deutsch

9 Sonstige Informationen / Literaturempfehlungen

Modulhandbuch Umwelt- und Verfahrenstechnik

Teilnahme am Praktikum erfolgt in der Regel parallel zum Teilmodul "Chemische Reaktionstechnik"

Empfohlene Literatur (jeweils neueste Auflage):

- Bearns, M.; Behr, A. et al.: Technische Chemie. Wiley-VCH, 2. Auflage, 2013
- Emig, G.; Klemm, E.: Technische Chemie Einführung in die Reaktionstechnik. Springer Verlag, 2005
- Hertwig, K.; Martens, L.: Chemische Verfahrenstechnik. Oldenbourg Wissenschaftsverlag GmbH,
 2007
- Schwister, K.; Leven, V.: Verfahrenstechnik für Ingenieure: Ein Lehr- und Übungsbuch, Hanser Verlag GmbH & Co. KG, München, 2013